5 research outputs found

    Adiabatic Shear Band Formation in Metallic Glasses

    Get PDF
    Metallic glasses (MGs) are widely used in many applications due to their unique and attractive properties such as high strength, high elastic limit and good corrosion resistance. Experiments have shown that deformation in MGs is governed by either shear banding or cavitation process leading to a ductile or brittle material response, respectively. In this chapter, shear band formation process in metallic glasses is modeled using free volume theory in infinitesimal deformation. According to the free volume theory, local free volume concentration is considered as order parameter which can be changed by three processes, namely diffusion, annihilation and stress driven creation. Equations are set up for the evolution of free volume and stresses based on conservation of free volume, and mechanical equilibrium, respectively. Another important parameter to consider while modeling the shear bands is temperature as the temperature inside the shear band can reach up to glass transition temperature. This can be achieved by assuming shear band formation process as an adiabatic process whereby evolution equation for temperature is also included with plastic work as the heat source. Example of quasi-static deformation in thin MG strip is solved using this proposed formulation. Formation of the shear band and resulting stresses are studied through the introduction of small inhomogeneity along the thickness direction in the strip

    Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-based Battery Enclosures for Crashworthiness

    Full text link
    Carbon fiber composite can be a potential candidate for replacing metal-based battery enclosures of current electric vehicles (E.V.s) owing to its better strength-to-weight ratio and corrosion resistance. However, the strength of carbon fiber-based structures depends on several parameters that should be carefully chosen. In this work, we implemented high throughput finite element analysis (FEA) based thermoforming simulation to virtually manufacture the battery enclosure using different design and processing parameters. Subsequently, we performed virtual crash simulations to mimic a side pole crash to evaluate the crashworthiness of the battery enclosures. This high throughput crash simulation dataset was utilized to build predictive models to understand the crashworthiness of an unknown set. Our machine learning (ML) models showed excellent performance (R2 > 0.97) in predicting the crashworthiness metrics, i.e., crush load efficiency, absorbed energy, intrusion, and maximum deceleration during a crash. We believe that this FEA-ML work framework will be helpful in down select process parameters for carbon fiber-based component design and can be transferrable to other manufacturing technologies

    Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models

    Get PDF
    Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96  TeV. With 4.8  fb-1 of integrated luminosity analyzed at CDF and 5.4  fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120  GeV, 0.38 pb at mH=165  GeV, and 0.83 pb at mH=200  GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe

    Tests for Anxiolytic Activity

    No full text
    corecore